Искусственная нагрузка для блока питания. Электронная импульсная нагрузка на базе TL494 Нагрузка активная схема для бп


Со временем у меня скопилось определенное количество различных китайских AC-DC преобразователей для зарядки аккумуляторов мобильных телефонов, фонарей, планшетов, а также небольшие импульсные источники питания для электронных и собственно сами акккумуляторы. На корпусах зачастую указываются электрические параметры устройства, но так как чаще всего дело приходится иметь именно с китайскими изделиями, где завысить показатели дело святое, то не лишним было бы проверить реальные параметры устройства, прежде чем использовать его для поделки. Кроме того возможно использование источников питания без корпуса, на которых не всегда имеется информация об их параметрах.


Многие могут сказать, что достаточно использовать мощные переменные или постоянные резисторы, автомобильные лампы или попросту нихромовые спирали. У каждого метода есть свои недостатки и преимущества, но главное - при использование этих методов плавной регулировки тока добиться довольно сложно.

Поэтому я собрал для себе электронную нагрузку на операционном усилители LM358 и составном транзисторе КТ827Б с испытанием источников питания напряжением от 3 В до 35В. В этом устройстве ток через нагрузочный элемент стабилизирован, поэтому он практически не подвержен температурному дрейфу и не зависит от напряжения проверяемого источника, что очень удобно при снятии нагрузочных характеристик и проведении других испытаний, особенно длительных.


Материалы:
- микросхема LM358;
- транзистор КТ827Б (NPN транзистор составной);
- резистор 0,1 Ом 5 Вт;
- резистор 100 Ом;
- резистор 510 Ом;
- резистор 1 кОм;
- резистор 10 кОм;
- переменный резистор 220 кОм;
- конденсатор не полярный 0,1 мкФ;
- 2 шт конденсатор оксидный 4.7 мкФ х 16В;
- конденсатор оксидный 10 мкФ х 50В;
- алюминиевый радиатор;
- стабильный источник питания 9-12 В.

Инструменты:
- паяльник, припой, флюс;
- электродрель;
- лобзик;
- сверла;
- метчик М3.

Инструкция по сборке устройства:

Принцип действия. Устройство по принципу работы является источником тока, который управляется напряжением. Мощный составной биполярный транзистор КТ 827Б с током коллектора Iк= 20А, коэффициентом усиления h21э более 750 и максимальной рассеиваемой мощностью 125 Вт является эквивалентом нагрузки. Резистор R1 мощностью 5Вт - датчик тока. Резистором R5 изменяют ток через резистор R2 либо R3 в зависимости от положения переключателя и соответственно напряжение на нем. На операционном усилители LM358 и транзисторе КТ 827Б собран усилитель с отрицательной обратной связью с эмиттера транзистора на инвертирующий вход операционного усилителя. Действие ООС проявляется в том, что напряжение на выходе ОУ вызывает такой ток через транзистор VT1, чтобы напряжение на резисторе R1 было равно напряжению на резисторе R2 (R3). Поэтому резистором R5 регулируют напряжение на резисторе R2 (R3) и соответственно ток через нагрузку (транзистор VT1). Пока ОУ находится в линейном режиме, указанное значение тока через транзистор VT1 не зависит ни от напряжения на его коллекторе, ни от дрейфа параметров транзистора при его разогреве. Цепь R4C4 подавляет самовозбуждение транзистора и обеспечивает его устойчивую работу в линейном режиме. Для питания устройства необходимо напряжение от 9 В до 12 В, которое обязательно должно быть стабильным, поскольку от него зависит стабильность тока нагрузки. Устройство потребляет не более 10 мА.


Последовательность работ
Электрическая схема простая и не содержит много компонентов, поэтому не стал заморачиваться с печатной платой и произвел монтаж на макетной плате. Резистор R1 поднял над платой, так как он сильно греется. Желательно учитывать расположение радиокомпонентов и не ставить рядом с R1 электролитические конденсаторы. У меня не совсем получилось это сделать (выпустил из виду), что не совсем хорошо.


Мощный составной транзистор КТ 827Б установил на алюминиевый радиатор. При изготовлении теплоотвода его площадь должна быть не менее 100-150 см 2 на 10 Вт рассеиваемой мощности. Я использовал алюминиевый профиль от какого-то фото устройства общей площадью порядка 1000 см 2 . Перед установкой транзистора VT1 зачистил поверхность теплоотвода от краски и нанес теплопроводную пасту КПТ-8 на место установки.


Использовать можно любой другой транзистор серии КТ 827 с любым буквенным обозначением.


Также вместо биполярного транзистора можно в этой схеме использовать полевой n-канальный транзистор IRF3205 или другой аналог этого транзистора, но необходимо изменить номинал резистора R3 на 10 кОм.


Но при этом есть риск теплового пробоя полевого транзистора при быстром изменении проходящего тока от 1А до 10А. Скорее всего корпус ТО-220 не способен передать такое количество тепла за столь малое время и закипает изнутри! Ко всему можно добавить, что еще можно нарваться на подделку радиодетали и тогда параметры транзистора будут совсем непредсказуемы! То ли алюминиевый корпус КТ-9 транзистора КТ827!

Возможно проблему можно решить установив параллельно 1-2 таких же транзисторов, но практически я не проверял - отсутствуют в наличии те самые транзисторы IRF3205 в нужном количестве.

Корпус для электронной нагрузки применил от неисправной автомагнитолы. Ручка для переноса устройства присутствует. Снизу установил резиновые ножки для предотвращения скольжения. В качестве ножек использовал крышечки от пузырьков для медицинских препаратов.


На передней панели для подключения источников питания разместил двухконтактный акустический зажим. Такие используют на аудио колонках.


Также здесь расположена ручка регулятора тока, кнопка включения/выключения питания устройства, переключатель режимов работы электронной нагрузки, ампервольтметр для визуального контроля процесса измерения.


Ампервольтметр заказывал на китайском сайте в виде готового встраиваемого модуля.


Электронная нагрузка работает в двух режимах испытания: первый от 70 мА до 1А и второй от 700 мА да 10А.
Питание устройства происходит от стабилизированного импульсного источника питания напряжением 9,5 В.

Регулируемая по мощности нагрузка является частью испытательного оборудования, необходимого при налаживании различных электронных проектов. Например, при построении лабораторного источника питания, оно может "симулировать" подключенный потребитель тока, чтобы увидеть, насколько хорошо ваша схема работает не только на холостом ходу, но и на нагрузку. Добавление силовых резисторов для выхода можно делать только в крайнем случае, но не у каждого они есть да и долго их не продержать - сильно греются. В этой статье будет показано, как можно построить блок регулируемой электронной нагрузки с помощью недорогих компонентов, доступных для радиолюбителей.

Схема электронной нагрузки на транзисторах

В этой конструкции максимальный ток должен быть примерно 7 ампер и он ограничен 5W резистором, который был использован, и относительно слабым полевым транзистором. Ещё большие нагрузочные токи могут быть достигнуты с помощью резистора на 10 или 20 Вт. Входное напряжение, не должно превышать 60 вольт (максимум на эти полевые транзисторы). Основой служит ОУ LM324 и 4 полевых транзистора.

Два "запасных" операционных усилителя микросхемы LM324 используются для защиты и управления вентилятором охлаждения. U2C образует простой компаратор между напряжением, установленным термистором и делителем напряжения R5, R6. Гистерезис контролируется положительной обратной связью, полученной R4. Термистор помещается в непосредственный контакт с транзисторами на радиаторах и его сопротивление уменьшается с ростом температуры. Когда температура превышает установленный порог, выход U2C будет высокий. Вы можете заменить R5 и R6 с регулируемым переменником и вручную подбирать порог срабатывания. При настройке убедитесь, что защита срабатывает, когда температура транзисторов MOSFET чуть ниже предельно-допустимой, указанной в даташите. Светодиод D2 сигнализирует, когда активируется функция защиты от перегрузки - он установлен на передней панели.

В элементе U2B операционного усилителя также есть гистерезис компаратора напряжений и используется он для управления вентилятором 12 В (можно использовать от старых PC). Диод 1N4001 защищает MOSFET BS170 от индуктивный бросков напряжения. Нижний температурный порог для активации вентилятора, контролируется резистором RV2.

Сборка устройства

Была использована для корпуса старая алюминиевая коробка от коммутатора с большим количеством внутреннего пространства для компонентов. В электронной нагрузке использовал старые AC/DC адаптеры для питания 12 В для главной цепи и 9 В для приборной панели - она имеет цифровой амперметр, чтоб сразу видеть ток потребления. Мощность вы уже рассчитаете и сами по известной формуле.

Вот фотография тестовой установки. Лабораторный блок питания настроен на 5 В. Нагрузку показывает 0.49A. Так же подключен мультиметр на нагрузке, так что ток нагрузки и напряжение контролируются одновременно. Вы сами можете убедится в чёткой работе всего модуля.

Эта простая схема электронной нагрузки может быть использована для тестирования различных видов блоков питания. Система ведет себя как резистивная нагрузка с возможностью регулирования.

С помощью потенциометра мы можем зафиксировать любую нагрузку от 10мА до 20А, и такое значение будет поддерживаться независимо от падения напряжения. Величина тока непрерывно отображается на встроенном амперметре — поэтому нет необходимости для этой цели использовать сторонний мультиметр.

Схема регулируемой электронной нагрузки

Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя.

Операционный усилитель LM358 делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. R2 предназначен для грубой подстройки, а R1 для точной.

Резистор R5 и транзистор VT3 (при необходимости и VT4) необходимо подобрать соответствующими максимальной мощности, которой мы хотим нагрузить наш блок питания.

Подбор транзистора

В принципе подойдет любой N-канальный MOSFET транзистор. От его характеристики будет зависеть рабочее напряжение нашей электронной нагрузки. Параметры, которые должны заинтересовать нас — большой I k (ток коллектора) и P tot (рассеиваемая мощность). Ток коллектора — это максимальный ток, который может пустить через себя транзистор, а рассеиваемая мощность — это мощность, которую транзистор может отвести в виде тепла.

В нашем случае транзистор IRF3205 теоретически выдерживает ток до 110А, однако его максимальная мощность рассеивания около 200 Вт. Как нетрудно подсчитать, максимальный ток 20А мы можем задать при напряжении до 10В.

Для того чтобы улучшить эти параметры, в данном случае используем два транзистора, что позволит рассеивать 400 Вт. Плюс ко всему нам будет нужен мощный радиатор с принудительным охлаждением, если мы действительно собираемся выжать максимум.

Время от времени у радиолюбителей возникает необходимость в электронной нагрузке. Что такое электронная нагрузка? Ну, если по простому, это такой прибор, который позволяет нагрузить блок питания (или другой источник) стабильным током, который естественно регулируется. О подобном уже писал уважаемый Kirich, я же решил попробовать в деле устройство «фирменное», запихнув его в какой-нибудь корпус и прицепив к нему приборчик для индикации. Как видим, они отлично сочетаются по заявленным параметрам.

Итак, нагрузка.платка размером 59х55мм, в комплекте пара клемм 6.5мм (весьма тугие, да еще и с защелкой - просто так не снять, нужно нажимать специальный язычок. отличные клеммы), 3-проводной шлейф с разъемом для подключения потенциометра, двухпроводной кабелёк с разъемом для подключения питания, винтик М3 для прикручивания транзистора к радиатору.

Платка красивая, края фрезерованы, пайка ровная, флюс отмыт.

На плате есть два силовых разъема для подключения собственно нагрузки, разъемы для подключения потенциометра (3-контактный), питания (2-контактный), вентилятора (3-контактный) и три контакта для подключения прибора. Тут я хочу обратить ваше внимание, что как правило черный тонкий провод от измерительного прибора использоваться не будет! В частности, в моём случае, с вышеописанным прибором (см. ссылку на обзор) - подключать тонкий черный провод НЕ НУЖНО, потому что питание и нагрузки и прибора идет от одного БП.

Силовой элемент - транзистор (200V, 30A)

Ну а из микросхем на плате присутствуют компаратор LM393, операционник LM258 и регулируемый стабилитрон TL431.

На просторах интернета была найдена :

Скажу честно - всю схему досконально не перепроверял, но беглое схемы с платой сравнение показало что вроде как всё сходится.

Собственно, больше о самой нагрузке рассказывать-то и нечего. Схема довольно простая и не работать вообще говоря не может. Да и интерес в данном случае представляет скорее её работа под нагрузкой в составе готового устройства, в частности - температура радиатора.

Долго думал из чего сделать корпус. была мысль согнуть из нержавейки, склеить из пластика… А потом подумал - так вот же оно, максимально доступное и повторяемое решение - «кнопочный пост» КП-102, на две кнопки. Радиатор нашел в ящике, вентилятор там же, клеммы и выключатель купил в оффлайне, а бананы и сетевой разъем выколупал из чего-то старого на чердаке;)

Забегая вперед скажу, что я лоханулся, и тот трансформатор который я использовал (в комплекте с выпрямительным мостиком, конечно) - не потянул данный девайс по причине высокого потребляемого вентилятором тока. Увы. Буду заказывать , должен как раз вписаться по габаритам. Как вариант - можно использовать и внешний 12В блок питания, коих тоже полно и на бэнге и в арсенале любого радиолюбителя. Питать нагрузку от исследуемого блока питания крайне нежелательно, не говоря уже о диапазоне напряжений.

Кроме того нам понадобится потенциометр на 10кОм для регулировки тока. Я рекомендую ставить многооборотистые потенциометры, например или . И там и там есть нюансы. первый тип - на 10 оборотов, второй на 5. у второго типа вал очень тонкий, около 4мм, кажется, и стандартные ручки не подходят - я натягивал два слоя термоусадки. у первого типа вал потолще, но ИМХО тоже не дотягивает до стандартных размеров, поэтому возможны проблемы - впрочем, их я в руках не держал, так что утверждать на 100% не могу. Ну и диаметр/длина как видим заметно отличаются, так что нужно прикидывать по месту. У меня были в наличии потенцы второго типа, так что я не запаривался по этому поводу, хотя надо бы и первых прикупить для коллекции. Для потенциометра нужна ручка - для эстетики и удобства. Вроде как для потенциометров первого типа должны подойти ручки, во всяком случае они с фиксирующим винтом и будут нормально держаться на гладком валу. Я же использовал то что было в наличии, натянув пару слоёв термоусадки и капнув суперклеем для фиксации термоусадки на валу. Метод проверенный - я его использовать еще для блока питания, пока всё работает, уж пару лет.

Далее были муки компоновки, которые показали что фактически единственно возможным решением является то, что я приведу ниже. К сожалению, данное решение требует подрезания корпуса, ибо из-за ребер жесткости не входит плата, а выключатель и регулятор не входят из-за того что я их старался разместить в центре выемок на корпусе, а они в итоге упёрлись в толстую стенку внутри. знал бы - перевернул бы переднюю панель.

Итак, размечаемся и делаем отверстия под сетевой разъем, транзистор и радиатор на задней стенке:

Теперь передняя панель. Отверстие под прибор это просто (правда, как я писал в предыдущем обзоре, защелки у него дурацкие, и я от греха подальше предпочел вначале защелкнуть в корпус устройства корпус прибора, а потом уже вщелкнуть в него внутренности прибора). Отверстия под выключатель и регулятор - тоже относительно просто, хотя и пришлось на фрезерном станке выбрать пазы на стенках. А вот как расположить гнёзда, чтобы «обойти» отверстие на передней панель - задача. Но я приклеил кусочек черного пластика и просверлил отверстия прямо в нем. Получилось и красиво и аккуратно.

Теперь нюансик. в приборе у нас есть термодатчик. Но зачем измерять температуру в корпусе, если можно прислонить его к радиатору? Это гораздо более полезная информация! А раз уж прибор всё равно разобран - ничто не мешает выпаять термодатчик и удлинить провода.

Для прижима датчика к радиатору я приклеил кусочек пластика к корпусу таким образом, чтобы отпустив винты крепления радиатора можно было подсунуть под пластик термодатчик, а затянув эти винты - надежно его там зафиксировать. Отверстие вокруг транзистора заблаговременно сделал на несколько мм больше.

Ну и упихиваем весь этот «взрыв на макаронной фабрике» в корпус:



Результат:



Проверка температуры радиатора:



Как видим на примерно 55Вт через 20 минут температура радиатора в непосредственной близости от силового транзистора стабилизировалась на 58 градусах.

Вот такая температура самого радиатора снаружи:



Тут, повторюсь, есть нюансики: на момент проверки устройство работало от хилого трансформатора и мало того что под нагрузкой напряжение просаживалось до 9 вольт (то есть при нормальном питании охлаждение будет ЗНАЧИТЕЛЬНО лучше), так еще и из-за некачественного питания ток стабилизировать толком не удавалось, поэтому на разных фото он немного разный.

При питании от кроны и соответственно с выключенным вентилятором имеем вот что:

Провода от БП у меня тонкие, поэтому падение напряжения тут довольно значительное получилось, ну и при желании можно еще уменьшить количество переходных сопротивлений, припаявшись везде где можно и убрав клеммы. меня же такая точность вполне устраивает - впрочем, о точности говорили в прошлом обзоре. ;)

Выводы: вполне рабочая штука, позволяющая сэкономить время на разработку собственного решения. В качестве «серьёзной» и «профессиональной» нагрузки воспринимать её, пожалуй, не стоит, но ИМХО отличная штука для начинающих, ну или когда нужно редко.

Из плюсов могу отметить хорошее качество изготовления, а минус, пожалуй, один - отсутствие потенциометра и радиатора в комплекте, и это нужно обязательно иметь в виду - устройство придется доукомплектовывать, чтобы оно начало работать. Второй минус - отсутствие термоконтроля вентилятора. При том что «ненужная» половинка компаратора как раз есть. Но это нужно было вносить на этапе разработки и изготовления платы, потому как если навешивать терморегулятор «сверху» - то его разумнее на отдельной плате собрать;)

По моей готовой конструйне - тоже есть нюансы, в частности, нужно будет поменять блок питания, ну и вообще говоря было бы неплохо и предохранитель какой-то поставить. Но предохранитель это лишние контакты и лишние сопротивления в цепи, так что тут я пока не уверен совершенно. Можно также переставить на плату шунт из прибора и задействовать его и для прибора и для электроники нагрузки, убрав «лишний» шунт из цепи.

Несомненно, существуют и «более другие» электронные нагрузки, которые стоят сопоставимо. Например . Отличие обозреваемой - в заявленном входном напряжении, до 100В, тогда как в основном нагрузки рассчитаны на работу до 30В. Ну и в данном случае у нас модульная конструкция, что лично меня весьма устраивает. Надоел прибор? Поставили поточнее или покрупнее, или еще чего. Не устраивает мощность? Поменяли транзистор или радиатор и т.д.

Одним словом - я вполне доволен результатом (ну только вот блок питания другой прикрутить - но это я сам дурак, а вы предупреждены), и вполне рекомендую к приобретению.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +35 Добавить в избранное Обзор понравился +43 +72

Для проверки и налаживания блоков питания, особенно мощных, требуется низкоомная регулируемая нагрузка с допустимой рассеиваемой мощностью до 100 Вт и даже более.

Применение для этой цели переменных резисторов не всегда возможно, в основном из-за ограниченной мощности рассеяния. на ток несколько десятков ампер можно изготовить на основе стабилизатора тока на мощном полевом переключательном транзисторе . Но эти эквиваленты не всегда удобны для применения, поскольку для них требуется отдельный источник питания.

Его схема показана на рис. 1 (нажмите для увеличения). На ОУ DA1.2 и полевом транзисторе VT2 собран стабилизатор тока. Ток через полевой транзистор (I VT2) зависит от сопротивления датчика тока R I (резисторов R11-R18) и напряжения на движке переменного резистора R8 (U R8), которым регулируют ток: I VT2 = U R8 /R I . Конденсатор С4 подавляет высокочастотные помехи, а С5 и С6 в цепи обратной связи ОУ DA1.2 и полевого транзистора соответственно повышают устойчивость работы стабилизатора.

Питается ОУ от повышающего стабилизированного преобразователя напряжения с выходным напряжением 5 В, собранного на микросхеме DA2. Это же напряжение через резистор R7 поступает на регулятор тока. Благодаря преобразователю напряжения устройство можно питать от испытываемого источника питания. При этом минимальное входное напряжение - 0,8…1 В, что позволяет применять предлагаемый эквивалент для проверки и измерения параметров Ni-Cd и Ni-MH аккумуляторов типоразмера АА или ААА.

На ОУ DA1.1 и транзисторе VT1 собран ограничитель напряжения питания преобразователя. При входном напряжении менее 3,8 В на выходе ОУ DA1.1 присутствует напряжение около 4 В, транзистор VT1 открыт полностью и питающее напряжение поступает на преобразователь. Когда входное напряжение превышает 3,8 В, напряжение на выходе ОУ DA1.1 снижается, поэтому рост напряжения на эмиттере транзистора VT1 прекращается и оно остаётся стабильным. Ограничитель напряжения необходим, поскольку предельное значение питающего напряжения микросхемы преобразователя (DA2) 6 В.

Конструкция и детали эквивалента нагрузки

Применены постоянные резисторы для датчика тока серии RC (типоразмер 2512, максимальная рассеиваемая мощность 1 Вт), остальные - РН1-12 типоразмера 1206 или 0805, переменный - СП4-1, СПО. Все конденсаторы для поверхностного монтажа, оксидные - танталовые типоразмера В или С, остальные - керамические, причём конденсатор С6 монтируют непосредственно на выводах транзистора. Разъём Х1 - винтовой клеммник, рассчитанный на требуемый ток. Транзистор ВС846 можно заменить транзистором серии КТ3130, a IRL2910 - транзистором 1RL3705N, IRL1404Z или другим мощным полевым переключательным с пороговым напряжением не более 2,5 В. Дроссель - для поверхностного монтажа SDR0703 или с проволочными выводами ЕС24.

Все элементы, кроме переменного резистора, полевого транзистора, разъёма, вентилятора и конденсатора С6, монтируют на односторонней печатной плате из стеклотекстолита толщиной 1… 1,5 мм, её чертёж показан на рис. 2. Применён теплоотвод с вентилятором на напряжение 12 В от процессора персонального компьютера. Транзистор и разъём крепят к теплоотводу винтами, а плату приклеивают. Применение теплопроводящей пасты для транзистора обязательно. Электродвигатель вентилятора начинает вращение при входном напряжении 3…4 В и при 8…10 В уже достаточно эффективно обдувает теплоотвод. Для данного варианта конструкции применён датчик тока с суммарным сопротивлением 0,05 Ом и рассеиваемой мощностью 8 Вт, поэтому максимальный ток эквивалента - 12…13 А, а максимальная рассеиваемая мощность не превышает 100 Вт. Применив более мощные резисторы в качестве датчика тока и более эффективный теплоотвод, можно соответственно увеличить и ток, и рассеиваемую мощность. Максимальное входное напряжение в данном случае зависит от допустимого напряжения питания вентилятора.

Устройство размещают в корпусе подходящего размера (подойдёт корпус от блока питания персонального компьютера), на передней панели устанавливают входные гнёзда, соединённые с разъёмом Х1, и переменный резистор, который можно снабдить проградуированной шкалой. Теплоотвод следует изолировать от металлического корпуса, поскольку он имеет гальваническую связь со стоком полевого транзистора.

Максимальное значение тока устанавливают подборкой резистора R7, при этом движок переменного резистора R8 должен быть в верхнем по схеме положении. Поскольку электродвигатель вентилятора подключён непосредственно к входному разъёму, ток, потребляемый им, складывается с током стабилизатора, поэтому при изменении входного напряжения суммарный ток также изменяется. Чтобы этот ток был стабильным, нижний по схеме вывод электродвигателя подключают не к минусовой линии питания, а к истоку полевого транзистора, как показано на рис.1 штриховой линией.

Можно использовать для проверки источников питания переменного тока частотой 50 Гц, например, понижающих трансформаторов. В этом случае устройство подключают (с соблюдением полярности) к выходу выпрямительного моста, в котором желательно применить диоды Шотки. Между плюсовым выводом конденсатора С1 и точкой соединения резистора R3 и коллектора транзистора VT1 устанавливают диод того же типа, что и VD1, а ёмкость конденсатора С2 следует увеличить до 100 мкФ. В диодном мосте диоды должны быть рассчитаны на ток эквивалента. Следует учесть, что в этом случае минимальное и максимально допустимое напряжение возрастёт на величину падения напряжения на диодах моста и дополнительном диоде.

ЛИТЕРАТУРА
1. Нечаев И. Эквивалент нагрузки. - Радио, 2007, № 3, с. 34.
2. Нечаев И. Универсальный эквивалент нагрузки. - Радио, 2005, № 1, с. 35.
3. Нечаев И. Универсальный эквивалент нагрузки. - Радио, 2002, № 2, с. 40, 41.

Советы