Мультивибратор схема принцип действия. Принцип работы мультивибратора на транзисторах

Радиосхемы начинающим радиолюбителям

В этой статье мы приводим несколько устройств, в основу которых положена одна схема - несимметричного мультивибратора на транзисторах разной проводимости.

мигалка

Используя данную схему вы можете собрать прибор с мигающим светом электрической лампочки (см. рис. 1) и применить его для различных целей. Например, установить на велосипеде для питания лампочки поворота или в модели маяка, сигнальном фонаре, на авто- или судомодели как мигающий фонарь.

Нагрузкой несимметричного мультивибратора, собранного на транзисторах Т1, Т2, служит лампочка Л1. Частота повторения импульсов определяется величиной емкости конденсатора С1 и резисторов R1, R2. Резистор R1 ограничивает максимальную частоту вспышек, а резистором R2 можно плавно менять их частоту. Начинать работу надо с максимальной частоты, которой соответствует верхнее по схеме положение движка резистора R2.

Обратите внимание, устройство питается от батареи 3336Л, которая под нагрузкой дает 3,5 В, а лампочка Л1 применена на напряжение всего 2,5 В. Не перегорит ли она? Нет! Длительность ее свечении очень коротка, и нить не успевает перегреться. Если транзисторы обладают большим коэффициентом усиления, то вместо лампочки 2.5 В x 0.068 А можно применить лампочку 3.5В x 0.16 А. В качестве транзистора Т1 подойдут транзисторы типа МП35-МП38, а Т2 - МП39-МП42.

Метроном

Если в эту же схему вместо лампочки вы установите громкоговоритель, то получите другой прибор - электронный метроном. Он применяется при обучении музыке, для отсчета времени в ходе физических экспериментов и при фотопечати.

Если немного изменить схему - уменьшить емкость конденсатора С1 и ввести резистор R3, то увеличится длительность импульса генератора. Звук усилится (рис. 2). Этот прибор может выполнять роль квартирного звонка, звукового сигнала модели или детского педального автомобиля. (В последнем случае напряжение надо увеличить до 9 В.) А может быть использован и для обучения азбуке Морзе. Только тогда вместо кнопки Кн1 надо поставить телеграфный ключ. Тон звука подбирается конденсатором С1 и резистором R2. Чем больше R3, тем громче звук генератора. Однако если его величина будет больше одного килоома, то колебания в генераторе могут и не возникнуть.

В генераторе применены такие же транзисторы, как и в предыдущей схеме, а в качестве громкоговорителя - наушники или головка с сопротивлением катушки от 5 до 65 Ом.

Индикатор влажности

Несимметричный мультивибратор на транзисторах разной проводимости обладает интересным свойством: при работе оба транзистора одновременно или открыты или заперты. Ток, потребляемый запертыми транзисторами, очень мал. Это позволяет создавать экономичные индикаторы изменения неэлектрических величин, например индикаторы влажности. Принципиальная схема такого индикатора приведена на рисунке 3. Как видно из схемы, генератор постоянно подключен к источнику питания, но не работает, поскольку оба транзистора заперты. Уменьшает потребляемый ток и резистор R4. К гнездам Г1, Г2 подключен датчик влажности - две тонкие облуженные проволоки длиной по 1,5 см. Они пришиты к материи на расстоянии 3-5 мм друг от друга Сопротивление сухого датчика велико. У влажного оно падает. Транзисторы открываются, генератор начинает работать Чтобы уменьшить, громкость, надо уменьшить напряжение питания или величину резистора R3. Такой индикатор влажности можно применять при уходе за новорожденными детьми.

Индикатор влажности со звуковым и световым сигналом

Если немного расширить схему, то индикатор влажности одновременно со звуковым сигналом будет подавать световой - начнет зажигаться лампочка Л1. В этом случае, как видно из схемы (рис. 4), в генераторе устанавливаются два несимметричных мультивибратора на транзисторах разной проводимости. Один собран на транзисторах Т1, Т2 и управляется датчиком влажности, подключенным к гнездам Г1, Г2. Нагрузкой этого мультивибратора служит лампа Л1. Напряжение с коллектора Т2 управляет работой второго мультивибратора, собранного на транзисторах Т3, Т4. Он работает как генератор звуковой частоты, и на его выходе включен громкоговоритель Гр1. Если нет необходимости в подаче звукового сигнала, то второй мультивибратор может быть отключен.

Транзисторы, лампа и громкоговоритель в этом индикаторе влажности применены такие же, как и в предыдущих приборах.

Имитатор сирены

Интересные приборы можно построить, используя зависимость частоты несимметричного мультивибратора на транзисторах разной проводимости от тока базы транзистора Т1. Например, генератор, имитирующий звук сирены. Такой прибор можно установить на модели "скорой помощи", пожарной машины, спасательного катера.

Принципиальная схема прибора приведена на рисунке 5. В исходном положении кнопка Кн1 разомкнута. Транзисторы заперты. Генератор не работает. При замыкании кнопки через резистор R4 заряжается конденсатор С2. Транзисторы открываются, и мультивибратор начинает работать. По мере заряда конденсатора С2 растет ток базы транзистора Т1 и увеличивается частота мультивибратора. При размыкании кнопки все повторяется в обратном порядке. Звук сирены имитируется при периодическом замыкании и размыкании кнопки. Скорость нарастания и спада звука подбирается резистором R4 и конденсатором С2. Тон сирены устанавливается резистором R3, а громкость звука - подбором резистора R5. Транзисторы и громкоговоритель выбираются такими же, как и в предыдущих приборах.

Прибор для проверки транзисторов

Учитывая, что в данном мультивибраторе применены транзисторы разной проводимости, вы можете использовать его как прибор для проверки транзисторов методом замены. Принципиальная схема такого прибора приведена на рисунке 6. За основу взята схема звукового генератора, но с равным успехом может быть использован генератор световых импульсов.

Первоначально, замкнув кнопку Кн1, проверьте работоспособность прибора. В зависимости от типа проводимости испытуемый транзистор подключите к гнездам Г1 - Г3 или Г4-Г6. При этом пользуйтесь переключателем П1 или П2. Если при нажатии кнопки в громкоговорителе будет звук, значит, транзистор исправен.

В качестве переключателей П1 и П2 можно взять тумблеры с двумя контактами на переключение. На рисунке переключатели показаны в положении "Контроль". Питается прибор от батареи 3336Л.

Звуковой генератор для проверки усилителей

На основе такого же мультивибратора вы можете построить довольно простой генератор для проверки приемников и усилителей. Его принципиальная схема приведена на рисунке 7. Её отличие от звукового генератора состоит в том, что вместо громкоговорителя на выходе мультивибратора включен 7-ступенчатый регулятор уровня напряжения.

Э. ТАРАСОВ
Рис Ю. ЧЕСНOKOBA
ЮТ Для умелых рук 1979 №8

Мультивибраторы – это еще одна форма осцилляторов. Генератор представляет собой электронную схему, которая способна поддерживать сигнал переменного тока на выходе. Он может генерировать прямоугольные, линейные или импульсные сигналы. Для колебания генератор должен удовлетворять двум условиям Баркгаузена:

Т коэффициент усиления контура он должен быть немного больше единицы.

Сдвиг фазы цикла должен быть 0 градусов или 360 градусов.

Для выполнения обоих условий генератор должен иметь некоторую форму усилителя, и часть его выхода должна быть регенерирована на вход. Если коэффициент усиления усилителя меньше единицы, схема не будет колебаться, а если она больше единицы, схема будет перегружена и будет давать искаженную форму волны. Простой генератор может генерировать синусоидальную волну, но не может генерировать прямоугольную волну. Прямоугольная волна может быть сформирована с помощью мультивибратора.

Мультивибратор – это форма генератора, которая имеет две ступени, благодаря которым мы можем получить выход из любого из состояний. Это в основном две схемы усилителя, скомпонованные с регенеративной обратной связью. При этом ни один из транзисторов не проводит одновременно. Одновременно только один транзистор проводит, а другой находится в выключенном состоянии. Некоторые схемы имеют определенные состояния; состояние с быстрым переходом называется процессами переключения, где происходит быстрое изменение тока и напряжения. Это переключение называется триггерным. Следовательно, мы можем запустить цепь внутри или снаружи.

Схемы имеют два состояния.

Одним из них является стабильное состояние, в котором цепь остается навсегда без какого-либо запуска.
Другое состояние является нестабильным: в этом состоянии схема остается в течение ограниченного периода времени без какого-либо внешнего запуска и переключается в другое состояние. Следовательно, использование многовибарторов осуществляется в двух состояниях цепей, таких как таймеры и триггеры.

Нестабильный мультивибратор с использованием транзистора

Это свободно работающий генератор, который непрерывно переключается между двумя нестабильными состояниями. При отсутствии внешнего сигнала транзисторы поочередно переключаются из состояния отключения в состояние насыщения на частоте, определяемой постоянными времени RC цепей связи. Если эти постоянные времени равны (R и C равны), то будет генерироваться прямоугольная волна с частотой 1 / 1,4 RC. Следовательно, нестабильный мультивибратор называется генератором импульсов или генератором прямоугольных импульсов. Чем больше значение базовой нагрузки R2 и R3 по отношению к нагрузке коллектора R1 и R4, тем больше коэффициент усиления по току и острее будет край сигнала.

Основным принципом работы нестабильного мультивибратора является небольшое изменение электрических свойств или характеристик транзистора. Это различие приводит к тому, что один транзистор включается быстрее, чем другой, когда питание подается в первый раз, что вызывает колебания.

Схема Объяснение

нестабильный мультивибратор состоит из двух поперечных связи усилителей RC.
Схема имеет два нестабильных состояния
Когда V1 = НИЗКИЙ и V2 = ВЫСОКИЙ, тогда Q1 ВКЛ и Q2 ВЫКЛ
Когда V1 = ВЫСОКИЙ и V2 = НИЗКИЙ, Q1 ВЫКЛ. и Q2 ВКЛ.
При этом R1 = R4, R2 = R3, R1 должно быть больше, чем R2
C1 = C2
При первом включении цепи ни один из транзисторов не включен.
Базовое напряжение обоих транзисторов начинает увеличиваться. Любой из транзисторов включается первым из-за разницы в легировании и электрических характеристиках транзистора.

Рис. 1: Принципиальная схема работы транзисторного нестабильного мультивибратора

Мы не можем сказать, какой транзистор проводит первым, поэтому мы предполагаем, что Q1 проводит первым, а Q2 выключен (C2 полностью заряжен).

Q1 проводит, а Q2 отключен, следовательно, VC1 = 0 В, так как весь ток на землю из-за короткого замыкания Q1, и VC2 = Vcc, так как все напряжение на VC2 падает из-за разомкнутой цепи TR2 (равно напряжению питания).
Из-за высокого напряжения VC2 конденсатор C2 начинает заряжаться через Q1 через R4, а C1 начинает заряжаться через R2 через Q1. Время, необходимое для зарядки C1 (T1 = R2C1), больше, чем время, необходимое для зарядки C2 (T2 = R4C2).
Так как правая пластина C1 подключена к базе Q2 и заряжается, значит, у этой пластины высокий потенциал, и когда она превышает напряжение 0,65 В, она включается Q2.
Поскольку C2 полностью заряжен, его левая пластина имеет напряжение -Vcc или -5V и подключена к базе Q1. Следовательно, он выключается Q2
TR Теперь TR1 выключен, и Q2 проводит, следовательно, VC1 = 5 В и VC2 = 0 В. Левая пластина C1 ранее находилась под напряжением -0,65 В, которое начинает подниматься до 5 В и подключается к коллектору Q1. C1 сначала разряжается от 0 до 0,65 В, а затем начинает заряжаться через R1 через Q2. Во время зарядки правая пластина С1 имеет низкий потенциал, который выключает Q2.
Правая пластина C2 подключена к коллектору Q2 и предварительно находится на + 5В. Таким образом, C2 сначала разряжается от 5 В до 0 В, а затем начинает заряжаться через сопротивление R3. Левая пластина C2 во время зарядки находится под высоким потенциалом, который включает Q1, когда достигает напряжения 0,65 В.

Рис. 2: Принципиальная схема работы транзисторного нестабильного мультивибратора

Теперь Q1 проводит, а Q2 выключен. Вышеуказанная последовательность повторяется, и мы получаем сигнал на обоих коллекторах транзистора, который не в фазе друг с другом. Для получения идеальной прямоугольной волны любым коллектором транзистора мы принимаем как сопротивление коллектора транзистора, базовое сопротивление, то есть (R1 = R4), (R2 = R3), а также то же значение конденсатора, что делает нашу схему симметричной. Следовательно, рабочий цикл для низкого и высокого значения выходного сигнала является тем же, который генерирует прямоугольную волну
Constant Постоянная времени формы сигнала зависит от базового сопротивления и коллектора транзистора. Мы можем рассчитать его период времени по: Постоянная времени = 0.693RC

Принцип действия мультивибратора на видео c объяснением

В этом видеоуроке канала Паяльник TV покажем, как взаимосвязаны элементы электрической цепи и познакомимся с происходящими в ней процессами. Первой схемой, на основе которой будет рассмотрен принцип работы, является схема мультивибратора на транзисторах. Схема может находиться в одном из двух состояний и периодически переходит из одного в другое.

Анализ 2-х состояний мультивибратора.

Всё, что мы наблюдаем сейчас, это два светодиода, которые поочерёдно мигают. Почему это происходит? Рассмотрим сначала первое состояние.

Первый транзистор VT1 закрыт, а второй транзистор полностью открыт и не препятствует протеканию коллекторного тока. Транзистор в этот момент находится в режиме насыщения, что позволяет снизить на нём падение напряжения. И поэтому правый светодиод горит в полную силу. Конденсатор C1 в первый момент времени был разряжен, и ток беспрепятственно проходил на базу транзистора VT2, полностью открывая его. Но спустя мгновение конденсатор начинает быстро заряжаться базовым током второго транзистора через резистор R1. После того, как он полностью зарядится (а как известно, полностью заряженный конденсатор не пропускает ток), то транзистор VT2 вследствие этого закрывается и светодиод гаснет.

Напряжение на конденсаторе C1 равно произведению базового тока на сопротивление резистора R2. Перенесемся во времени назад. Пока транзистор VT2 был открыт и правый светодиод горел, конденсатор C2, заряженный ранее в предыдущем состоянии, начинает медленно разряжаться через открытый транзистор VT2 и резистор R3. Пока он не разрядился, напряжение на базе VT1 будет отрицательным, которое полностью запирает транзистор. Первый светодиод не горит. Получается, что к моменту затухания второго светодиода конденсатор C2 успевает разрядиться и переходит в готовность пропустить ток на базу первого транзистора VT1. К тому моменту, когда перестаёт гореть второй светодиод, загорается первый светодиод.

А во втором состоянии происходит всё то же самое, но наоборот, транзистор VT1 открыт, VT2 закрыт. Переход в другое состояние происходит тогда, когда конденсатор C2 разряжается, напряжение на нём уменьшается. Разрядившись полностью, он начинает заряжаться в обратную сторону. Когда напряжение на переходе база-эмиттер транзистора VT1 достигнет напряжения, достаточного для его открывания, примерно 0,7 В, этот транзистор начнёт открываться и первый светодиод загорится.

Снова обратимся к схеме.

Через резисторы R1 и R4 происходит зарядка конденсаторов, а через R3 и R2 происходит разрядка. Резисторы R1 и R4 ограничивают ток первого и второго светодиода. От их сопротивления зависит не только яркость свечения светодиодов. Они также определяют время зарядки конденсаторов. Сопротивление R1 и R4 подбирается намного меньшее, чем R2 и R3, чтобы зарядка конденсаторов происходила быстрее, чем их разрядка. Мультивибратор используется для получения прямоугольных импульсов, которые снимаются с коллектора транзистора. При этом нагрузка подключается параллельно одному из коллекторных резисторов R1 или R4.

На графике представлены прямоугольные импульсы, вырабатываемые данной схемой. Одна из областей называется фронт импульса. Фронт имеет наклон, и чем больше будет время зарядки конденсаторов, тем этот наклон будет больше.


Если в мультивибраторе использованы одинаковые транзисторы, конденсаторы одинаковой ёмкости, и если резисторы имеют симметричные сопротивления, то такой мультивибратор называется симметричным. Он имеет одинаковую длительность импульсов и длительность пауз. А если имеются различия в параметрах, то мультивибратор будет несимметричным. Когда мы подключаем мультивибратор к источнику питания, то в первый момент времени оба конденсатора разряжены, а значит на базу обоих конденсаторов поступит ток и появится неустановившийся режим работы, при котором должен открыться лишь один из транзисторов. Так как эти элементы схемы имеют некоторые погрешности номиналов и параметров, один из транзисторов откроется первым, и мультивибратор запустится.

Если вы захотите смоделировать данную схему в программе Multisim, то нужно выставить номиналы резисторов R2 и R3 так, чтобы их сопротивления отличались хотя бы на десятую часть Ома. То же самое проделайте с ёмкостью конденсаторов, иначе мультивибратор может не запуститься. При практической реализации данной схемы я рекомендую осуществлять питание напряжением от 3 до 10 Вольт, а параметры самих элементов сейчас вы узнаете. При условии, что используется транзистор КТ315. Резисторы R1 и R4 не оказывают влияния на частоту импульсов. В нашем случае они ограничивают ток светодиода. Сопротивление резисторов R1 и R4 можно взять от 300 Ом до 1кОм. Сопротивление резисторов R2 и R3 от 15 кОм до 200 кОм. Ёмкость конденсаторов от 10 до 100 мкФ. Представим таблицу со значениями сопротивлений и ёмкостей, в которой приведены примерная ожидаемая частота импульсов. То есть, чтобы получить импульс длительностью 7 секунд, то есть, длительность свечения одного светодиода, равная 7 секундам, нужно использовать резисторы R2 и R3 сопротивлением 100 кОм и конденсатора ёмкостью 100 мкФ.

Вывод.

Времязадающими элементами данной схемы являются резисторы R2, R3 и конденсаторы C1 и C2. Чем меньше их номиналы, тем чаще будут переключаться транзисторы, и тем чаще будут мерцать светодиоды.

Мультивибратор можно реализовать не только на транзисторах, но и на базе микросхем. Оставляйте свои комментарии, не забывайте подписаться на канал «Паяльник TV» на ютубе, чтобы не пропустить новые интересные видео.

Еще интересная о радиопередатчике.

Мультивибратор - прибор для создания несинусоидальных колебаний. На выходе получается сигнал любой другой формы, кроме синусоидальной волны. Частота сигнала в мультивибраторе определяется сопротивлением и емкостью, а не индуктивностью и емкостью. Мультивибратор состоит из двух каскадов усилителя, выход каждого каскада подается на вход другого каскада.

Принцип действия мультивибратора

Мультивибратор может создавать волну почти любой формы, в зависимости от двух факторов: сопротивления и емкости каждого из двух каскадов усилителя и от того, откуда в цепи снимается выход.

Например, если сопротивление и емкость двух каскадов равны, один каскад проводит 50% времени и другой каскад проводит 50% времени. Для обсуждения мультивибраторов в этом разделе предполагается, что сопротивление и емкость обоих каскадов равны. Когда эти условия существуют, выходной сигнал является прямоугольной волной.

Бистабильные мультивибраторы (или «флип-флоп») имеют два устойчивых состояния. В устойчивом состоянии один из двух каскадов усилителя находится в состоянии проводимости, а другой каскад не проводит. Для того, чтобы перейти от одного устойчивого состояния к другому, бистабильный мультивибратор должен получить внешний сигнал.

Этот внешний сигнал называется внешним импульсом триггера. Он инициирует переход мультивибратора из одного состояния в другое. Другой триггерный импульс необходим, чтобы перевести цепь обратно в ее исходное состояние. Эти триггерные импульсы называются «запуск» и «перезапуск».

Помимо бистабильного мультивибратора, существуют также моностабильный мультивибратор, который имеет только одно устойчивое состояние и астабильный мультивибратор, который не имеет устойчивого состояния.

Мультивибратор это самый простой генератор импульсов, работающий в режиме автогенерации колебаний то есть при подачи напряжения на схему сам начинает генерировать импульсы.

Простейшая схема представлена на рисунке ниже:



мультивибратор схема на транзисторах

Причем емкости конденсаторов C1, C2 всегда подбираются максимально одинаковыми, а номинал базовых сопротивления R2, R3 должен быть выше чем коллекторные. Это важное условие для правильной работы МВ

Как же все таки работает мультивибратор на транзисторах, итак: при включении питания начинают заряжаться емкости C1, C2.

Первый конденсатор по цепочки R1- C1- переход БЭ второго корпус.

Вторая емкость зарядится по цепи R4 - C2 - переход БЭ первого транзистора - корпус.

Так как на транзисторах имеется базовый ток, то они почти открываются. Но так как двух одинаковых транзисторов не бывает, какой то из них откроется чуть раньше своего коллеги.

Предположим, у нас раньше откроется первый транзистор. Открывшись он разрядит емкость С1. Причем разряжаться она будет в обратной полярности, закрывая второй транзистор. Но первый находиться в открытом состоянии только на момент, пока конденсатор С2 не зарядится до уровня напряжения питания. По окончании процесса зарядки С2, Q1 запирается.

Но к этому времени С1 почти разряжен. А это значит, что через него потечет ток, открывающий второй транзистор, который, разрядит емкость С2 и будет оставаться в открытом состоянии до повторной зарядки первого конденсатора. И так из цикла в цикл, пока не отключим питание от схемы.

Как легко заметить время переключения здесь определяется номиналом емкости конденсаторов. Кстати и сопротивление базовых сопротивлений R1, R3 здесь тоже вносит определенный фактор.

Вернемся в первоначальное состояние, когда первый транзистор у нас открыт. В этот момент емкость С1 у нас уже не только успеет разрядится, но и начнет заряжаться в обратной полярности по цепи R2- С1- коллектор-эммитер открытого Q1.

Но сопротивление у R2 достаточно большое и C1 не успевает зарядиться до уровня источника питания, но зато при запирании Q1 она разрядится через базовую цепочку Q2, помогая ему скорее открыться. Это же сопротивление увеличивает и время зарядки первого конденсатора C1. А вот коллекторные сопротивления R1, R4 являются нагрузкой и на частоту генерации импульсов особого влияния не оказывают.

В качестве практического ознакомления предлагаю собрать , в той же статье рассмотрена и конструкция на трех транзисторах.



мультивибратор схема на транзисторах в конструкции новогодней мигалки

Разберемся с работой несимметричного мультивибратора на двух транзисторах на примере простой схемы радиолюбительской самоделки издающей звук подскакивающего металлического шарика. Работает схема следующим образом: по мере разряда емкости С1 громкость ударов снижается. От номинала С1 зависит общая продолжительность звучания, а конденсатор С2 задает длительность пауз. Транзисторы могут быть абсолютно любые p-n-p типа.

Существуют два типа мультивибраторов отечественного микро исполнения - автоколебательные (ГГ) и ждущие (АГ).

Автоколебательные генерируют периодическую последовательность импульсов прямоугольной формы. Их длительность и период следования задаются параметрами внешних элементов сопротивлений и емкостей или уровнем управляющего напряжения.

Отечественными микросхемами автоколебательных МВ, например являются 530ГГ1, К531ГГ1, КМ555ГГ2 более подробную информацию по ним и многим другим вы найдете в , например Якубовский С. В. Цифровые и аналоговые интегральные микросхемы или ИМС и их зарубежные аналоги. Справочник в 12 томах под редакцией Нефедова

Для ждущих МВ длительность генерируемого импульса также задается характеристиками навесных радиокомпонентов, а период следования импульсов задается периодом следования импульсов запуска, поступающих на отдельный вход.

Примеры: К155АГ1 содержит один ждущий мультивибратор, формирующий одиночные импульсы прямоугольной формы с хорошей стабильностью длительности; 133АГ3, К155АГ3, 533АГ3, КМ555АГ3, КР1533АГ3 содержит два ждущих МВ, формирующих одиночные импульсы напряжения прямоугольной формы с хорошей стабильностью; 533АГ4, КМ555АГ4 два ждущих МВ, формирующих одиночные импульсы напряжения прямоугольной формы.

Очень часто в радиолюбительской практике предпочитают не специализированные микросхемы, а собирают его на логических элементах.

Самая простая схема мультивибратора на логических элементах И-НЕ показана на рисунке ниже. Она имеет два состояния: в одном состоянии DD1.1 заперт, а DD1.2 открыт, в другом - все обстоит противоположным образом.

Например, если DD1.1 закрыт, DD1.2 открыт, тогда емкость С2 заряжается выходным током DD1.1, идущим через сопротивление R2. Напряжение на входе DD1.2 положительно. Оно поддерживает DD1.2 в открытом состоянии. По мере заряда емкости С2 снижается ток заряда и падает напряжение на R2. В момент достижения порогового уровня начинает запираться DD1.2 и возрастать его потенциал на выходе. Рост этого напряжения передается через С1 на выход DD1.1, последний окрывается, и развивается обратный процесс, завершающийся полным запиранием DD1.2 и отпиранием DD1.1 - переходом устройства во второе неустойчивое состояние. Теперь будет заряжаться С1 через R1 и выходное сопротивление компонента микросхемы DD1.2, а С2 - через DD1.1. Таким образом наблюдаем типовой автоколебательный процесс.

Еще одна из простых схем, которую можно собрать на логических элементах это генератор импульсов прямоугольной формы. Причем такой генератор будет работать в режиме автогенерации, аналогично транзисторному. На рисунке ниже представлен генератор, построенного на одной логической цифровой отесественной микросборке К155ЛА3


мультивибратор схема на К155ЛА3

Практический пример такой реализации можно посмотреть на странице электроники в конструкции вызывного устройства.

Рассмотрен практический пример реализации работы ждущего МВ на триггере в конструкции оптического выключателя освещения на ИК лучах.

Мультивибратор схема которого показана на рисунке 1 представляет собой каскадное соединение транзисторных усилителей где выход первого каскада подключен ко входу второго через цепь содержащую конденсатор и выход второго каскада подключен ко входу первого через цепь содержащую конденсатор. Усилители мультивибратора представляют собой транзисторные ключи которые могут находиться в двух состояниях. Схема мультивибратора на рисунке 1 отличается от схемы триггера рассмотренного в статье " ". Тем что имеет в цепях обратной связи реактивные элементы поэтому схема может генерировать несинусоидальные колебания. Найти сопротивления резисторов R1 и R4 можно из соотношений 1 и 2:

Где I КБО =0.5мкА -максимальный обратный ток коллектора транзистора кт315а,

Iкmax=0.1А - максимальный ток коллектора транзистора кт315а, Uп=3В - напряжение питания. Выберем R1=R4=100Ом. Конденсаторы C1 и C2 выбираются в зависимости от того какая требуется частота колебаний мультивибратора.

Рисунок 1 - Мультивибратор на транзисторах КТ315А

Снимать напряжение можно между точками 2 и 3 или между точками 2 и 1. На графиках ниже показано как примерно будет меняться напряжение между точками 2 и 3 и между точками 2 и 1.

T - период колебаний, t1 - постоянная времени левого плеча мультивибратора, t2 - постоянная времени правого плеча мультивибратора могут быть рассчитаны по формулам:

Задавать частоту и скважность импульсов генерируемых мультивибратором можно изменяя сопротивления подстроечных резисторов R2 и R3. Можно также заменить конденсаторы C1 и C2 переменными (или подстроечными) и изменяя их ёмкость задавать частоту и скважность импульсов генерируемых мультивибратором, такой способ, даже, более предпочтителен, поэтому если есть подстроечные (или лучше переменные) конденсаторы то лучше их использовать, а на место переменных резисторов R2 и R3 поставить постоянные. На фотографии ниже показан собранный мультивибратор:

Для того чтобы убедиться в том что собранный мультивибратор работает к нему (между точками 2 и 3) был подключен пьезодинамик. После подачи питания на схему пьезодинамик начал трещать. Изменения сопротивлений подстроечных резисторов приводили либо к увеличению частоты звука издаваемого пьезодинамиком либо к её уменьшению или к тому что мультивибратор переставал генерировать.
Программа расчёта частоты, периода и постоянных времени, скважности импульсов снимаемых с мультивибратора:

Если программа не работает то скопируйте её html код в блокнот и сохраните в формате html.
Если используется браузер Internet Explorier и он блокирует работу программы, то необходимо разрешить заблокированное содержимое.


js отключен

Другие мультивибраторы: Ходовая часть