Как рассчитать и намотать импульсный трансформатор для полумостового блока питания? Расчет трансформатора на Ш — образном ферритовом сердечнике Справочник расчет импульсных трансформаторов 1983 г.

Содержание:

В электронике и электротехнике широко используются различные типы трансформаторов. Это дает возможность применения электронных систем во многих областях производственной и хозяйственной деятельности. Поэтому наряду с основными расчетами, большое значение приобретает расчет импульсного трансформатора. Данные устройства являются важными элементами, которые используются во всех схемах современных блоков питания.

Назначение и действие импульсного трансформатора

Импульсные трансформаторы применяются в системах связи и различных автоматических устройствах. Их основной функцией является внесение изменений в амплитуду и полярность импульсов. Основным условием нормальной работы этих устройств считается минимальное искажение передаваемых ими сигналов.

Принцип действия импульсного трансформатора заключается в следующем: при поступлении на его вход прямоугольных импульсов напряжения с определенным значением, в первичной обмотке происходит постепенное возникновение электрического тока и дальнейшее увеличение его силы. Подобное состояние, в свою очередь, приводит к изменению магнитного поля во вторичной обмотке и появлению электродвижущей силы. В этом случае сигнал практически не искажается, а небольшие потери тока ни на что не влияют.

При выходе трансформатора на проектную мощность, обязательно появляется отрицательная часть импульса. Его воздействие вполне возможно сделать минимальным, путем установки во вторичную обмотку простого диода. В результате, в этом месте импульс также максимально приблизится к прямоугольной конфигурации.

Главным отличием импульсного трансформатора от других аналогичных технических систем считается его исключительно ненасыщенный режим работы. Для изготовления магнитопровода применяется специальный сплав, обеспечивающий высокую пропускную способность магнитного поля.

Расчет исходных данных и выбор элементов устройства

В первую очередь необходимо правильно выбрать наиболее подходящий магнитопровод. К универсальным конструкциям относятся броневые сердечники с Ш-образной и чашеобразной конфигурацией. Установка необходимого зазора между частями сердечника делает возможным применение их в любых импульсных блоках питания. Однако, если собирается полумостовой двухтактный преобразователь, можно обойтись обычным кольцевым магнитопроводом. При расчетах необходимо учитывать внешний диаметр кольца (D), внутренний диаметр кольца (d) и высота кольца (Н).

Существуют специальные справочники по магнитопроводам, где размеры кольца представлены в формате КDxdxH.

Перед тем как производить расчет импульсного трансформатора необходимо получить определенный набор исходных данных. Сначала нужно определиться с питающим напряжением. Здесь имеются свои сложности, в связи с возможными . Поэтому для расчетов берется максимальное значение в 220 В + 10%, к которому применяются специальные коэффициенты:

  • Амплитудное значение составляет: 242 В х 1,41 = 341,22 В.
  • Далее 341,22 - 0,8 х 2 = 340 В за вычетом падения напряжения на выпрямителе.

Значение индукции и частоты определяется с помощью таблиц:

1. Марганец-цинковые ферриты.

Параметры

Марка феррита

2. Никель-цинковые ферриты.

Параметры

Марка феррита

Граничная частота при tgδ ≤ 0,1, МГц

Магнитная индукция B при Hм = 800 А / м, Тл

Намотка импульсных трансформаторов

При намотке импульсных трансформаторов необходимо учитывать особенности этих устройств. В первую очередь следует обращать внимание на равномерное распределение обмотки по всему периметру магнитопровода. В противном случае произойдет значительное снижение мощности устройства, а в некоторых случаях - его выход из строя.

В случае намотки провода своими руками, используется обмотка «виток к витку», выполненная в один слой. Исходя из такой технической характеристики, выполняется и расчет импульсного трансформатора в части определения необходимого количества витков. Диаметр провода, используемого для обмотки, нужно подобрать таким образом, чтобы весь провод точно уложился в один слой, а количество витков в этом случае будет совпадать с расчетными данными. Разница между и результатом, полученным с помощью формулы, может составлять от 10 до 20%, что позволяет делать обмотку, не обращая внимания на точное количество витков.

Для выполнения расчетов существует формула: W = n (D - 10 S - 4 d ) / d , в которой W -является количеством витков в первичной обмотке, n - постоянная величина, равная 3,1416, D - внутренний диаметр кольца магнитопровода, S - толщина изоляционной прокладки, d - диаметр изолированного провода. Максимальный допуск ошибок при вычислениях составляет от -5 до +10% в зависимости от плотности укладки проводов.

П.А. Кошелев, А.А. Цариашвили
СПбГЭТУ «ЛЭТИ», Санкт-Петербург, Россия

Дан обзор существующих магнитных материалов, используемых для сердечников высокочастотных трансформаторов. Рассмотрена методика создания модели трансформатора в программе Microcap 9. Представлен пример расчета основных характеристик однотактного обратноходового преобразователя с высокочастотным трансформатором, проведено моделирование.

Ключевые слова: Магнитные материалы, пермаллой, однотактный обратноходовой преобразователь..

Введение

Импульсные источники питания (ИИП) становятся популярными из-за высокой эффективности, высокой удельной мощности и низких массогабаритных параметров, высокой энергетической плотности. Благодаря использованию широтно-импульсной модуляции (ШИР) они способны стабилизировать напряжение в широких пределах.

Одной из наиболее широко распространенных схем маломощного импульсного источника питания является схема обратноходового преобразователя (ОП), показанная на рисунке 1. Эта схема преобразует одно постоянное напряжение в другое, регулируя выходное напряжение посредством либо широтно-импульсной модуляции (ШИМ), либо частотно-импульсной модуляции (ЧИМ).

Рисунок 1 - Типовая схема обратноходового преобразователя

Методика работы силовой части ОП достаточно проста. В период, когда транзистор VT 1 открыт, в первичной обмотке трансформатора (ТР) начинает линейно нарастать ток. Во вторичной обмотке ток не течет из-за обратно включенного диода VD 1. При закрытии транзистора полярность напряжения на вторичной обмотке ТР меняется,в ней начинает течь ток, который заряжает выходной конденсатор и питает нагрузку. Другими словами, в течении первой части периода трансформатор ОП запасает энергию в магнитном поле сердечника, которая затем реализуется в нагрузке.

Смысл ШИМ состоит в следующем. При увеличении длительности включенного состояния транзистора, ТР запасает в себе большую мощность, что означает, что на выходе схемы будет большее напряжение. Таким образом, регулируя длительность включенного состояния транзистора, можно управлять выходным напряжением схемы.

В связи с распространенностью импульсных источников питания, работающих на высокой частоте, целесообразно провести обзор существующих магнитных материалов для ВЧ ТР.

Далеко не все ферромагнетики подойдут для изготовления трансформаторов и дросселей, тем более высокочастотных. Наиболее подходящие свойства, которыми должны обладать эти материалы, таковы :

Материал должен легко намагничиваться и размагничиваться, то есть быть магнитомягким - обладать узкой петлей гистерезиса, малой коэрцитивной силой, большими значениями начальной и максимальной магнитной проницаемости;

Материал должен обладать большой индукцией насыщения, что позволит разработчику уменьшить габариты и массу электротехнических изделий;

Материал должен иметь возможно меньшие потери на перемагничивание и вихревые токи;

Материал должен иметь слабую зависимость магнитных свойств от механических напряжений типа растяжения и сжатия;

Материал должен в максимальной степени сохранять магнитные характеристики при изменении температуры, влажности, с течением времени.

В большинстве справочников магнитные материалы классифицируются по трем основным группам:

а) проводниковые - электротехнические стали и сплавы (пермаллои);

б) полупроводниковые - ферриты;

в) диэлектрические - магнитодиэлектрики.

Применение материалов, относящихся к разным группам, имеет свои особенности. При изготовлении электромагнитных элементов, работающих на частотах от 50 Гц до 10 кГц, используют электротехнические стали, на частотах от 5...10 до 20...30 кГц - электротехнические сплавы, на частотах от нескольких килогерц и выше - ферриты и магнитодиэлектрики. Отдельные виды электротехнических сплавов так называемого микронного проката работают на частотах до нескольких сотен килогерц. Но в любом случае надо помнить, что верхняя частота материала ограничена потерями в нем на гистерезис и вихревые токи.

Сравним наиболее часто используемые ВЧ магнитные материалы: ферриты, альсиферы и пресспермы.

Ферриты наиболее часто используются в силовой импульсной технике. Они представляют собой поликристаллические многокомпонентные соединения, изготавливаемые по особой технологии, общая химическая формула которых MeFe2O3 (где Me - какой-либо ферромагнетик, например, Mn, Zn, Ni). Являясь полупроводниками, ферриты обладают высокими значениями собственного электрического сопротивления, превышающего сопротивление сталей в 50 раз и более. Именно это обстоятельство позволяет применять ферриты в индуктивных элементах, работающих на высоких частотах, без опасения, что могут резко повыситься потери на вихревые токи. Наибольшее распространение в силовой технике получили отечественные марганец-цинковые ферриты марок НМ и никель-цинковые ферриты марок НН. При выборе между этими марками предпочтение, конечно, следует отдать ферритам марок НМ, поскольку они имеют более высокую температуру Кюри (температура, при которой ферромагнетики теряют свои ферромагнитные свойства), что позволяет эксплуатировать их при более высоких температурах перегрева. Потери на гистерезис у марганец-цинковых ферритов на порядок меньше, чем у никель-цинковых. Ферриты марок НМ обладают высокой стабильностью к воздействию механических нагрузок. Однако электрическое сопротивление ферритов марок НМ меньше, чем ферритов марок НН, поэтому последние могут эксплуатироваться на более высоких частотах. Кривые намагничивания марганец-цинковых (НМ) от никель-цинковых (НН) ферритов изображены на рисунке 2.

1 –4000 НМ, 2 – 3000 НМ, 3 – 2000 НМ, 4 – 1000 НМ, 5 – 2000 НН, 6 – 600 НН, 7 – 400 НН, 8 – 200 НН

Рисунок 2 - Кривые намагничивания марганец-цинковых (НМ)
от никель-цинковых (НН) ферритов

Альсиферы - широко применяемый в силовой импульсной технике вид магнитодиэлектриков. Основу магнитного наполнителя альсиферов составляет тройной сплав Al-Si-Fe (алюминий, кремний, железо). Отечественной промышленностью выпускается 6 марок альсиферов с относительной проницаемостью от 22 до 90, предназначенных для работы в интервале температур от -60 до +120 °С. На рисунке 3 приведены кривые намагничивания альсиферов марок ТЧ-60, ГЧ-32, ВЧ-22.

Пресспермы - магнитодиэлектрики, производимые на основе Mo-пермаллоя. Изготовляют их из мелкого металлического порошка на базе высоконикелевого пермаллоя, легированного молибденом. Пресспермы обладают повышенной магнитной проницаемостью, низким уровнем гистерезисных потерь. Отечественной промышленностью разработаны 10 марок пресспермов нетермокомпенсированных и столько же термокомпенсированных. Параметры некоторых представителей приведены в таблице 1. В обозначении термокомпенсированных пресспермов добавляется буква «К». Цифра в обозначении марки - это номинальная магнитная проницаемость. Верхняя рабочая частота МО-пермаллоевых сердечников составляет 100 кГц.

Рисунок 3 - Кривые намагничивания альсиферов
марок 1 -ТЧ-60, 2- ГЧ-32, 3- ВЧ-22.

Таблица 1 - Параметры отечественных пресспермов


На рисунке 4 приведены кривые намагничивания пресспермов наиболее распространенных марок.


Рисунок 4 - а) кривые намагничивания пресспермов;
б) кривые изменения проницаемости от напряженности внешнего поля:
1 - МП-250; 2 - МП-140; 3 - МП-100; 4 - МП-60

Все импульсные источники с индуктивными элементами по типу преобразования можно разделить на два больших класса: источники с трансформаторами и источники с накоплением энергии в индуктивном элементе и последующей ее реализации в нагрузке. К первым относятся мостовые и полумостовые схемы инверторов напряжения, схема однотактного прямоходового преобразователя. Ко вторым - стабилизаторы понижающего и повышающего типа, разнообразные однотактные и двухтактные преобразователи, в частности схема однотактного обратноходового преобразователя.

В первом случае, в соответствие с расчетной формулой ЭДС обмотки ТР (1), на габариты индуктивного элемента существенное влияние оказывает В m - максимальная индукция насыщения в материале сердечника.

Во втором случае, по формуле (11), наибольшее влияние на габариты индуктивного элемента влияет H макс - значение максимальной напряженности магнитного поля в сердечнике. Грубо говоря, значение H макс характеризует способность материала сердечника аккумулировать энергию.

Таким образом, в случае использования прямоходовой схемы однотактного преобразователя необходимо выбирать материал с наибольшей индукцией насыщения, случае обратноходовой – с наибольшей напряженностью магнитного поля внутри сердечника. Наибольшей напряженностью магнитного поля обладают альсиферы и пресспермы, но площадь гистерезиса у альсиферов выше, что означает, что они будут иметь большие потери. Поэтому выберем для материала сердечника пресспермы серии МП.

Литература

1. Найвельт Г.С., Мазель К.Б. и др. Источники электропитания радиоэлектронной аппаратуры: Справочник под ред. Найвельта Г.С. - М.: Радио и связь, 1985. - 576 с.

2. Березин О.К., Костников В.Г., Шахнов В.А. Источники электропитания РЭА. - М.: "Три Л", 2000. - 400 с.

3. Irving M. Gottlieb Power Supplies, Switching Regulators, Inverters, and Converters, 2nd edition. – «McGraw-Hill», 1994

4. Семенов Б.Ю. Силовая электроника: от простого к сложному. – М.: СОЛОН-Пресс, 2005. – 416 с.: ил. (Серия «Библиотека инженера»)

5. http://rusgates.ru/ Официальный сайт производителя магнитных сердечников ОАО "Ферроприбор" (дочерние предприятия ООО "Нева-Феррит" и ООО "Магнит")

6. Микросхемы для импульсных источников питания и их применение. 2-е изд., испр. и доп. – М.: Издательский дом «Додэка- XXI », 2001. – 608 с.

7. Амелина М.А., Амелин С.А. Программа схемотехнического моделирования Micro - Cap 8. –М.: Горячая линия-Телеком, 2007. – 464 с. ил.

Библиографическая ссылка на статью:
П.А. Кошелев, А.А. Цариашвили Расчет и моделирование высокочастотного трансформатора в составе однотактного обратноходового преобразователя // Онлайн Электрик: Электроэнергетика. Новые технологии, 2014..php?id=134 (Дата обращения: 25.08.2019)

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:


Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая, технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Двухтактный преобразователь - преобразователь напряжения, использующий импульсный трансформатор. Коэффициент трансформации трансформатора может быть произвольным. Несмотря на то, что он фиксирован, во многих случаях может варьироваться ширина импульса, что расширяет доступный диапазон стабилизации напряжения. Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности.

В правильно сконструированном двухтактном преобразователе постоянный ток через обмотку и подмагничивание сердечника отсутствуют. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность.

Следующая упрощенная методика позволяет рассчитать основные параметры импульсного трансформатора выполненного на кольцевом магнитопроводе.

  1. Расчет габаритной мощности трансформатора

где Sc — площадь поперечного сечения магнитопровода, см2; Sw — площадь окна сердечника, см2; f — f — частота колебаний, Гц; Bмах — допустимое значение индукции для отечественных никель-марганцевых и никель-цинковых ферритов на частотах до 100 кГц.

Граничные частоты и величины индукции широко распространённых ферритов

Марганец-цинковые ферриты.

Параметр Марка феррита
6000НМ 4000НМ 3000НМ 2000НМ 1500НМ 1000НМ
0,005 0,1 0,2 0,45 0,6 1,0
0,35 0,36 0,38 0,39 0,35 0,35

Никель-цинкове ферриты.

Параметр Марка феррита
200НН 1000НН 600НН 400НН 200НН 100НН
Граничная частота при tg δ ≤ 0,1, МГц 0,02 0,4 1,2 2,0 3,0 30
Магнитная индукция B при Hм = 800 А / м, Тл 0,25 0,32 0,31 0,23 0,17 0,44

Для расчета площади поперечного сечения магнитопровода и площади окна сердечника магнитопровода используются следующие формулы:

Sc = (D — d) ⋅ h / 2

Sw=(d / 2)2 π

где D — наружный диаметр ферритового кольца, см; d — внутренний диаметр; h — высота кольца;

2. Расчет максимальной мощности трансформатора

Максимальную мощность трансформатора выбираем 80% от габаритной:

Pмах = 0,8 Pгаб

3. Расчет минимального числа витков первичной обмотки W1

Минимальное число витков первичной обмотки W1 определяется максимальным напряжением на обмотке U1 и допустимой индукцией сердечника Bмах:

4. Расчет эффективного значения тока первичной обмотке:

Эффективное значение тока первичной обмотки рассчитывается по формуле:

I1 = Pмах / Uэфф

При этом следует учитывать, что Uэфф = U1 / 1,41 = 0,707U1, так как Uэфф это действующее значение напряжения, а U1 максимальное значение напряжения.

5. Расчет диаметра провода в первичной обмотке:

где I1 — эффективное значение тока в первичной обмотке, A ; j — плотность тока, А/мм2;

Плотность тока зависит от мощности трансформатора, рассеиваемое количество теплоты пропорционально площади обмотки и перепаду температур между ней и средой. С увеличением размера трансформатора объем растет быстрее площади и для одинакового перегрева удельные потери и плотность тока надо уменьшать. Для трансформаторов мощностью 4..5 кВА плотность тока не превышает 1..2 А/мм².

Для справки в таблице приведены данные плотности тока в зависимости от мощности трансформатора

Pн, Вт 1 .. 7 8 .. 15 16 .. 40 41 .. 100 101 .. 200
j, А/мм 2 7 .. 12 6 .. 8 5 .. 6 4 .. 5 4 .. 4,5

6. Эффективное значение тока вторичной обмотки (I2), кол-во витков во вторичной обмотке (W2) и диаметр провода во вторичной обмотке (d2) рассчитывается по следующим формулам:

I2 = Pмах / U2эфф

где Uвых — выходное напряжение вторичной обмотки, Рмах — максимальная выходная мощность трансформатора, так же следует учитывать, что значение Pмах можно заменить на мощность нагрузки при условии, что мощность нагрузки будет меньше максимальной выходной мощности трансформатора.

W2 = (U2эфф*W1) / Uэфф

Исходя из всех выше перечисленных формул (с учетом плотности тока зависящим от мощности трансформатора) можно примерно рассчитать основные параметры импульсного трансформатора, для удобства рассчетов можно воспользоваться онлайн калькулятором.

Данная статья является упрощенной методикой расчета импульсного трансформатора для двухтактного преобразователя, все формулы и онлайн-калькулятор позволяют рассчитать примерные намоточные данные импульсного трансформатора , так как трансформатор имеет много взаимозависимых параметров.

При обнаружении ошибок в формулах, методике их применения и другие замечания просьба оставлять в комментариях.

После определения диаметра провода, следует учитывать, что диаметр провода рассчитывается без изоляции, воспользуйтесь таблицей данных обмоточных проводов для определения диаметра провода с изоляцией.

Таблица данных обмоточных проводов.

Диаметр без изоляции, мм

Сечение меди, мм²

Диаметр с изоляцией, мм

0,03 0,0007 0,045
0,04 0,0013 0,055
0,05 0,002 0,065
0,06 0,0028 0,075
0,07 0,0039 0,085
0,08 0,005 0,095
0,09 0,0064 0,105
0,1 0,0079 0,12
0,11 0,0095 0,13
0,12 0,0113 0,14
0,13 0,0133 0,15
0,14 0,0154 0,16
0,15 0,0177 0,17
0,16 0,0201 0,18
0,17 0,0227 0,19
0,18 0,0255 0,2
0,19 0,0284 0,21
0,2 0,0314 0,225
0,21 0,0346 0,235
0,23 0,0416 0,255
0,25 0,0491 0,275
0,27 0,0573 0,31
0,29 0,0661 0,33
0,31 0,0755 0,35
0,33 0,0855 0,37
0,35 0,0962 0,39
0,38 0,1134 0,42
0,41 0,132 0,45
0,44 0,1521 0,49
0,47 0,1735 0,52
0,49 0,1885 0,54
0,51 0,2043 0,56
0,53 0,2206 0,58
0,55 0,2376 0,6
0,57 0,2552 0,62
0,59 0,2734 0,64
0,62 0,3019 0,67
0,64 0,3217 0,69
0,67 0,3526 0,72
0,69 0,3739 0,74
0,72 0,4072 0,78
0,74 0,4301 0,8
0,77 0,4657 0,83
0,8 0,5027 0,86
0,83 0,5411 0,89
0.86 0,5809 0,92
0,9 0,6362 0,96
0,93 0,6793 0,99
0,96 0,7238 1,02
1 0,7854 1,07
1,04 0,8495 1,12
1,08 0,9161 1,16
1,12 0,9852 1,2
1,16 1,057 1,24
1,2 1,131 1,28
1,25 1,227 1,33
1,3 1,327 1,38
1,35 1,431 1,43
1,4 1,539 1,48
1,45 1,651 1,53
1,5 1,767 1,58
1,56 1,911 1,64
1,62 2,061 1,71
1,68 2,217 1,77
1,74 2,378 1,83
1,81 2,573 1,9
1,88 2,777 1,97
1,95 2,987 2,04
2,02 3,205 2,12
2,1 3,464 2,2
2,26 4,012 2,36

Во многом зависит от того, насколько правильно выполнен . Небольшое отклонение его параметров от оптимальных для конкретного источника питания приводит к снижению КПД и ухудшению характеристик.

Порядок расчета импульсного трансформатора

Рисп = 1,3 Рн (Рн — мощность, потребляемая нагрузкой). Далее, задавшись габаритной мощностью Ргаб, которая должная удовлетворять условию Ргаб ≥ Рисп, необходимо подобрать подходящий тороидальный ферритовый магнитопровод. Параметры магнитопровода связаны с Ргаб соотношением Ргаб = ScS0fBmax/150, Вт.

Здесь f — частота преобразования напряжения, Гц; Sc = (D-d)h/2 — площадь сечения магнитопровода, см2 (D и d — соответственно наружный и внутренний диаметры, h — высота кольца, см); S0 = p d2/4 — площадь окна магнитопровода, см2; Bmax — максимальное значение индукции (в тесла), которое зависит от марки феррита и может быть определено по справочнику, содержащему сведения о ферромагнитных материалах.

После этого зная напряжение на первичной обмотке трансформатора U1, находят число витков w1=0,25x104U1/fBmaxSc.

Для преобразователя (см. рисунок) U1 = Uпит/2- Uкэ нас, где Uпит — напряжение питания преобразователя, а Uкэ нас — напряжение насыщения коллектор — эмиттер транзисторов VT1, VT2.

Рассчитанное значение w1 нужно округлить в большую сторону (во избежание насыщения магнитопровода).

Затем находят число витков вторичной обмотки трансформатора: w2 = w1U2/U1 и диаметр провода: d2 = 0,6√I2 (U2 и I2 — соответственно напряжение и ток вторичной обмотки).

Теперь для закрепления пройденного материала рассмотрим расчет трансформатора для на конкретном примере.

  • Рассчитаем высокочастотный трансформатор блока питания стереофонического усилителя [ 3] , имеющего следующие выходные напряжения и токи:
  • U2 = (25+25) В
  • I2 = 3 A
  • U3 = 20 В
  • I3 = 1 A
  • U4 = 10 В
  • I4 = 3 А

Мощность нагрузки Pн = 200 Вт. Используемая мощность этого трансформатора Рисп = 1,3 · 200 = 260 Вт.

Частоту преобразования f выберем равной 10 5 Гц. В качестве магнитопровода используем кольцо типоразмера К38х24х7 из феррита марки 2000НН (Вmax = 0.25 T).

Определим площадь сечения Sc = (3,8 — 2,4) · 0,7/2 = 0,49 см 2 и площадь окна выбранного магнитопровода So=p ·2,4 2 ÷ 4 = 4,5 см 2 , рассчитаем габаритную мощность трансформатора Ргаб=0,49·4,5·10 5 ·0,25/150= = 367 Вт. Условие Ргаб ≥ Рисп выполняется.

Теперь определим напряжение на первичной обмотке трансформатора и число витков:

U1 = (285/2) — 1,6 = 141 В; w1 = (0,25 ∙10 4 ∙ 141) ÷ (10 5 ∙ 0,25 ∙ 0,49) ≈ 29.

Для исключения насыщения магнитопровода выбираем w1 = 30.

Imax = 200/0,8 · 141 = 1,75 A; d1 = 0,6√1,75 = 0,8 мм..

И в заключении этого определяем число витков и диаметр провода выходных обмоток:

w2 = 30 · 25/141 = 5; d2 = 0,6√3 = 1 мм;

w3 = 30 · 20/141 = 4; d3 = 0,6√1 = 0,6 мм;

w4 = 30 · 10/141 = 2; d4 = 0,6√3 = 1 мм.

Электрооборудование