Регулируемый блок питания от 0 вольт. Лабораторный блок питания своими руками

Простейший блок питания 0-30 Вольт для радиолюбителя.

Схема.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:



Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки - 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 - он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.


Блок питания 1-30V на LM317 + 3 х TIP41C
или 3 х 2SC5200.

В статье рассмотрена схема простого регулируемого источника питания, реализованная на микросхеме-стабилизаторе LM317, которая управляет мощными, включенными в параллель тремя транзисторами структуры NPN. Пределы регулировки выходного напряжения 1,2...30 Вольт с током нагрузки до 10 Ампер. В качестве мощных выходников применены транзисторы TIP41C в корпусе TO220, ток коллектора у них 6 Ампер, рассеиваемая мощность 65 Ватт. Принципиальная схема блока питания показана ниже:

В качестве выходников так же можно применить TIP132C, корпус TO220, ток коллектора у этих транзисторов 8 Ампер, рассеиваемая мощность 70 Ватт согласно datasheet.

Расположение выводов у транзисторов TIP132C, TIP41C следующее:

Расположение выводов у регулируемого стабилизатора LM317:

Транзисторы в корпусе TO220 впаиваются непосредственно в печатную плату и крепятся к одному общему радиатору с применением слюды, термопасты и изолирующих втулок. Но можно и применить транзисторы в корпусе TO-3, из импортных подойдут, например, 2N3055, ток коллектора которых до 15 Ампер, рассеиваемая мощность 115 Ватт, или транзисторы отечественного производства КТ819ГМ, они 15 Амперные с рассеиваемой мощностью 100 Ватт. В этом случае выводы транзисторов соединяются с платой проводами.

Как вариант, можно рассмотреть применение импортных 15-ти амперных транзисторов TOSHIBA 2SC5200 с рассеиваемой мощностью 150 Ватт. Именно этот транзистор я использовал при переделке KIT-набора блока питания, купленного на Алиэкспресс.

На принципиальной схеме клеммы PAD1 и PAD2 предназначены для подключения амперметра, на клеммы X1-1 (+) и X1-2 (-) подается входное напряжение с выпрямителя (диодного моста), X2-1 (-) и X2-2 (+) это выходные клеммы блока питания, к клеммнику JP1 подключается вольтметр.

Первый вариант печатной платы рассчитан на установку силовых транзисторов в корпусе TO220, вид LAY6 формата следующий:

Фото-вид платы LAY6 формата:

Второй вариант печатной платы под установку транзисторов типа 2SC5200, вид LAY6 формата ниже:

Фото-вид второго варианта печатной платы блока питания:

Третий вариант печатной платы такой же, но без диодной сборки, найдете в архиве с остальными материалами.

Список элементов схемы регулируемого блока питания на LM317:

Резисторы:

R1 – потенциометр 5K – 1 шт.
R2 – 240R 0,25W – 1 шт.
R3, R4, R5 – керамические резисторы 5W 0R1 – 3 шт.
R6 – 2K2 0,25W – 1 шт.

Конденсаторы:

С1, С2 – 4700...6800mF/50V – 2 шт.
С3 – 1000...2200mF/50V – 1 шт.
С4 – 150...220mF/50V – 1 шт.
С5, С6, С7 – 0,1mF = 100n – 3 шт.

Диоды:

D1 – 1N5400 – 1 шт.
D1 – 1N4004 – 1 шт.
LED1 – светодиод – 1 шт.
Диодная сборка – у меня не было в наличии сборок на чуть меньший ток, поэтому плата нарисована под использование KBPC5010 (50 Ампер) – 1 шт.

Транзисторы, микросхемы:

IC1 – LM317MB – 1 шт.
Q1, Q2, Q3 – TIP132C, TIP41C, КТ819ГМ, 2N3055, 2SC5200 – 3 шт.

Остальное:

Разъемы 2 Pin с болтовым зажимом (вход, выход, амперметр) – 3 шт.
Разъем 2 Pin 2,54mm (светодиод, регулирующий переменник) – 2 шт.
В принципе разъемы можно и не ставить.
Внушительный радиатор для выходников – 1 шт.
Трансформатор, вторичка на 22...24 Вольта переменки, способная дежать ток порядка 10...12 Ампер.

Размер файла архива с материалами по блоку питания на LM317 10A – 0,6 Mb.

Можно довольно легко сделать источник питания, который имеет стабильное напряжение на выходе и регулировку от 0 до 28В. Основа - дешёвая , усиленная с помощью двух транзисторов 2N3055. В таком схемном включении она становится более чем в 2 раза мощнее. Вы можете при необходимости использовать эту конструкцию для получения и 20 ампер (почти без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), просто в своём проекте не нуждался в таком большом токе. Ещё раз напоминаю: убедитесь, что вы установили транзисторы на большой радиатор, 2N3055 могут очень сильно нагреваться при полной нагрузке.

Список использованных в схеме деталей:

Трансформатор 2 x 15 вольт 10 ампер

D1...D4 = четыре MR750 (MR7510) диода или 2 x 4 1N5401 (1N5408).

F1 = 1 ампер

F2 = 10 ампер

R1 2k2 2,5 ватт

R3,R4 0.1 Ом 10 ватт

R9 47 0.5 ватт

C2 two times 4700uF/50v

C3,C5 10uF/50v

D5 1N4148, 1N4448, 1N4151

D11 светодиод

D7, D8, D9 1N4001

Два транзистора 2N3055

P2 47 или 220 Ом 1 ватт

P3 10k подстроечник

Хотя LM317 и имеет защиту от короткого замыкания, перегрузки и перегрева, предохранители в цепи сети трансформатора и предохранитель F2 на выходе не помешают. Выпрямленное напряжение: 30 х 1.41 = 42.30 вольт, измеренное на С1. Так что все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольт-это напряжение, что может быть на выходе, если один из транзисторов будет пробит!

Регулятор P1 позволяет изменять выходное напряжение на любое значение между 0 и 28 вольт. Так как в LM317 минимальное напряжение 1,2 вольта, то чтобы получить нулевое напряжение на выходе БП - поставим 3 диода, D7,D8 и D9 на выходе LM317 к базе 2N3055 транзисторов. У микросхемы LM317 максимальное выходное напряжение - 30 вольт, но с использованием диодов D7, D8 и D9 произойдёт наоборот падение выходного напряжения, и оно составит около 30 - (3х0,6В) = 28.2 вольта. Калибровать встроенный вольтметр нужно с помощью подстроечника P3 и, конечно, хорошего цифрового вольтметра.


Примечание . Помните, что нужно изолировать транзисторы от шасси! Это делается изоляционными и теплопроводными прокладками или, по крайней мере, тонкой слюдой. Можно применить термоклей и термопасту. При сборке мощного регулируемого блока питания не забывайте использовать толстые соединительные провода, которые подходят для передачи большого тока. Тонкие проводки нагреются и поплавятся!

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания . У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

Ну еще есть и самопальный блок питания:


Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:


Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

– выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

– можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

– очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

– защита от перегрузки и неправильного подключения

– на блоке питания путем короткого замыкания (КЗ) “крокодилов” устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):


Цифры в кружочках – это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
- 1 и 2 к трансформатору.
- 3 (+) и 4 (-) выход постоянного тока.
- 5, 10 и 12 на P1.
- 6, 11 и 13 на P2.
- 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост . Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

На восьмом выводе написано “NC”, что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А


Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!


Вот его распиновка:

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство – это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

У нас вот так:


Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K многооборотный подстроечный резистор
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ
C5 = 200нФ
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5401…1N5408
D5, D6 = 1N4148
D7, D8 = стабилитроны на 5,6V
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548 или BC547
Q2 = КТ961А
Q3 = BC557 или BC327
Q4 = КТ 827А
U1, U2, U3 = TL081, операционный усилитель
D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)


протравил


отмыл тонер


просверлил отверстия:


Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:


А вот так плата выглядит уже с полным монтажом:


Подготавливаем место под платку в нашем корпусе:


Приделываем к корпусу радиатор:


Не забываем про кулер, который будет охлаждать наши транзисторы:


Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?


Описание работы, печатку и список радиоэлементов я взял в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке


Мастер Куделя © 2013 Копирование материалов сайта разрешено только с указанием автора и прямой ссылки на сайт-источник

Блок питания 0-30В 10А

Этот довольно мощный блок питания выдаёт стабилизированное напряжение от 1 до 30 вольт при токе до 10 ампер.
В отличие от других БП, описанных на этом сайте, он обладает, кроме вольтметра, функцией измерения тока, что может быть применено, например, в гальванике.
На передней панели находятся (сверху вниз):
- зелёный светодиод включения БП;
- красный светодиод срабатывания защиты по току;
- головка измерения напряжения (верхняя шкала) и тока (нижняя шкала);
- слева от значка- переключатель индикации напряжения- тока;
- справа от значка- кнопка сброса защиты по току;
- регулятор выходного напряжения;
- клеммы подключения нагрузки.

Трансформатор должен иметь мощность от 300 Вт с напряжением на вторичке от 23 вольт переменки с выводом от средины вторички. Вывод нужен для реализации схемы защиты по току (внизу). На транзисторе Т1 собран ключ защиты. Падение напряжения на резисторе R2 приводит к открытию этого транзистора, срабатывает тиристорная оптопара АОУ103, срабатывает реле, контакты которого разрывают нагрузку на выходе БП и зажигают красный светодиод. После срабатывания защиты лучше сбросить переменником напряжение и кнопкой ПУСК вернуть блок в работу. Сам стабилизатор собран на стабилизаторе DA2 и двух мощных транзисторах VT3 и VT4, работающих в параллель.

Тут я привёл распальцовку:) кое каких активных элементов, чтобы вам не пришлось рыться в справочниках.
Не забудьте, на корпусе транзисторов 2N3055 находится коллектор, поэтому они должны быть изолированы от радиатора слюдяной или керамической прокладкой, смазанной кремнеорганической смазкой для теплопроводности.

Передняя панель с обратной стороны распаяна без каких либо сюрпризов. Схема с подстроечными резисторами для калибровки измеряемого тока и напряжения смонтирована прямо на выводах измерительной головки.

Вид на правую стенку изнутри.
Ближе к углу крепится реле. Типа реле не знаю, рабочее напряжение на обмотке 12 вольт постоянки, сопротивление обмотки 123 ом, ток 84 мА. Нормальнозамкнутые контакты коммутируют нагрузку, нормальноразомкнутые на сигнализацию срабатывания защиты (красный светодиод).
На переднем плане силовые транзисторы на медном радиаторе через керамические прокладки. Медь применена как отличный теплопроводящий материал, уступающий в этом отношении лишь серебру. Медный радиатор передаёт тепло дальше на дюралевый радиатор. Под транзисторами токовыравнивающие резисторы R9 и R10.
Под реле находится балластный резистор, падение напряжения на котором измерительная головка работает в режиме измерения тока. Конкретных цифр не буду приводить, всё зависит от того, какую головку найдёте. Скажу лишь как этот резистор можно изготовить. Во первых, сопротивление его по вашим рассчётам будет довольно мало, а во- вторых, его сопротивление должно быть довольно точным. Поэтому находим нихром. Не важно какого диаметра, ведь можно сыграть количеством проводов. Главное, нужно измерить его диаметр и по таблицам, которые я приводил , определяете его погонное сопротивление. Этого уже достаточно, чтобы по закону Ома высчитать длину и количество проволочек. Далее собираем проволочки в пучёк, засовываем в медные трубочки подходящего диаметра и сплющиваем их с соблюдением необходимой длины проволочек. Всё, балластник готов. Его можно припаивать к контактам.

Левая и задняя стенка.
Вверху левой стенки крепится печатная плата, на которой и находится вся мелочёвка. Схема печатной платы и её вид далее.
К самому радиатору левой стенки крепится силовая диодная сборка BB36931. Она работает до 80 вольт при токе до 10 ампер. Для качественного теплового контакта садим на кремнеорганическую мазь. Я использую для этого виксинт. Эта сборка хороша тем, что изолирующих прокладок не требуется.
На задней панели находятся предохранители и основной конденсатор. Конденсатор на всякий случай зашунтирован резистором.

Слева схема печатной платы со стороны навесных элементов. Справа с обратной стороны. Далее- уже виды вживую.

Расположение элементов внутреннего устройства блока питания не произвольно. Все они расположены таким образом, чтобы при сборке всех стенок вместе, они не мешали друг другу, а каждый выступ входил в соответствующее углубление. Что и видно на следующем фото.
Ну и, наконец, задняя стенка снаружи. Не мучайте себя напрасно, ведь зачастую при переноске шнурок болтается и мешает. Сделайте кронштейны для намотки провода и подберите его длину для наиболее удобной намотки. Не берите пример с заводских изделий. Ведь их делают не для людей, а для продажи. А вы всё же делаете для себя, любимого:)
К тому же на этих кронштейнах блок может работать лёжа на спине.

Трансмиссия